zambia_sample_200 <- oversample_wrapper_pair(name = "Zambia",
bins = zambia_sampling_bin,
raster_1 = zambia_population,
raster_2 = zambia_population_1k,
raster_3 = zambia_population_5k,
random_number = 680,
original_min_unit3 = 1,
original_sample_unit3 = 100,
by_factor=1.1,
verbose=2)
malawi_sample_200 <- oversample_wrapper_pair(name = "Malawi",
bins = maw_sampling_bin,
raster_1 = malawi_population,
raster_2 = malawi_population_1k,
raster_3 = malawi_population_5k,
random_number = 680,
original_min_unit3 = 1,
original_sample_unit3 = 100,
by_factor=1.1,
verbose=2)
respondents_per_bin <- function(sp_obj,name,onlydf=FALSE) {
if (any("Unit_3"==sp_obj$type)) {
tab1 <- sp_obj %>%
st_as_sf() %>%
filter(pick=="Sample"&type=="Unit_3") %>%
mutate(Bin = sapply(Name,function(x) {
strsplit(x,"@") %>%
lapply(function(y) y[2]) %>%
unlist()
})) %>%
as.data.frame() %>%
group_by(Bin) %>%
summarise(`Sampling Units`=n()) %>%
mutate(`Number of Households` = `Sampling Units` * 50) %>%
mutate(Bin = as.numeric(Bin)) %>%
arrange(Bin)
} else {
tab1 <- sp_obj %>%
st_as_sf() %>%
filter(pick=="Sample"&type!="Bin") %>%
mutate(Bin = sapply(Name,function(x) {
strsplit(x,"@") %>%
lapply(function(y) y[2]) %>%
unlist()
})) %>%
as.data.frame() %>%
group_by(Bin) %>%
summarise(`Sampling Units`=n()) %>%
mutate(`Number of Households` = `Sampling Units` * 25) %>%
mutate(Bin = as.numeric(Bin)) %>%
arrange(Bin)
}
if(onlydf) return(tab1)
kable(tab1,caption = paste0("Number of Respondents and sampling units in ",
name,". (n = ",
tab1 %$%
sum(`Number of Households`),")")) %>%
kable_styling(full_width = FALSE,position = "left")
}
nairobi_sample_150 %>%
respondents_per_bin("Nairobi")
Table 5.1: Number of Respondents and sampling units in Nairobi. (n = 3750)
Bin | Sampling Units | Number of Households |
---|---|---|
1 | 17 | 425 |
2 | 46 | 1150 |
3 | 22 | 550 |
4 | 23 | 575 |
5 | 10 | 250 |
6 | 22 | 550 |
7 | 8 | 200 |
8 | 2 | 50 |
lusaka_sample_150 %>%
respondents_per_bin("Lusaka")
Table 5.1: Number of Respondents and sampling units in Lusaka. (n = 3750)
Bin | Sampling Units | Number of Households |
---|---|---|
1 | 24 | 600 |
2 | 45 | 1125 |
3 | 33 | 825 |
4 | 24 | 600 |
5 | 4 | 100 |
6 | 7 | 175 |
7 | 7 | 175 |
8 | 6 | 150 |
lilongwe_sample_150 %>%
respondents_per_bin("Lilongwe")
Table 5.1: Number of Respondents and sampling units in Lilongwe. (n = 3750)
Bin | Sampling Units | Number of Households |
---|---|---|
1 | 18 | 450 |
2 | 16 | 400 |
3 | 26 | 650 |
4 | 13 | 325 |
5 | 20 | 500 |
6 | 22 | 550 |
7 | 18 | 450 |
8 | 17 | 425 |
zambia_sample_200 %>%
respondents_per_bin("Zambia")
Table 5.1: Number of Respondents and sampling units in Zambia. (n = 5000)
Bin | Sampling Units | Number of Households |
---|---|---|
1 | 10 | 500 |
2 | 12 | 600 |
3 | 12 | 600 |
4 | 9 | 450 |
5 | 23 | 1150 |
6 | 6 | 300 |
7 | 7 | 350 |
8 | 4 | 200 |
9 | 7 | 350 |
10 | 10 | 500 |
malawi_sample_200 %>%
respondents_per_bin("Malawi")
Table 5.1: Number of Respondents and sampling units in Malawi. (n = 5000)
Bin | Sampling Units | Number of Households |
---|---|---|
1 | 21 | 1050 |
2 | 7 | 350 |
3 | 11 | 550 |
4 | 8 | 400 |
5 | 10 | 500 |
6 | 10 | 500 |
7 | 11 | 550 |
8 | 6 | 300 |
9 | 11 | 550 |
10 | 5 | 250 |