To extract the population data, the sampling areas need to unified first. In the next step, the data gets extracted via the prepare_raster_of_sampling_area
. Here, we make use of the fasterize
package which is much faster in turning SpatialPolygons
into raster files than the original rasterize
function of the raster
package. Finally, we aggregate the extracted data to a 1 and a 5 kilometer grid. The 5 km grid is shown in the following graphs.
# unify
lilongwe_unified <- gUnaryUnion(lilongwe_bins)
lusaka_unified <- gUnaryUnion(lusaka_bins)
nairobi_unified <- gUnaryUnion(nairobi_bins)
# kenya_unified <- gUnaryUnion(kenya_sampling_bins)
# northern_tanzania_unified <- gUnaryUnion(northern_tanzania_sampling_bins)
# southern_tanzania_unified <- gUnaryUnion(southern_tanzania_sampling_bins)
malawi_unified <- gUnaryUnion(maw_sampling_bin)
zambia_unified <- gUnaryUnion(zambia_sampling_bin)
# extract
lilongwe_population <-
prepare_raster_of_sampling_area(malawi_population,lilongwe_unified)
lusaka_population <-
prepare_raster_of_sampling_area(zambia_population,lusaka_unified)
nairobi_population <-
prepare_raster_of_sampling_area(kenya_population,nairobi_unified)
# kenya_population <-
# prepare_raster_of_sampling_area(kenya_population,kenya_unified)
#
# northern_tanzania_population <-
# prepare_raster_of_sampling_area(tanzania_population,
# northern_tanzania_unified)
#
# southern_tanzania_population <-
# prepare_raster_of_sampling_area(tanzania_population,
# southern_tanzania_unified)
malawi_population <-
prepare_raster_of_sampling_area(malawi_population,malawi_unified)
zambia_population <-
prepare_raster_of_sampling_area(zambia_population,zambia_unified)
# aggregate
lilongwe_population_1k <- aggregate(lilongwe_population,
fact=10,fun=sum,na.rm=TRUE) # 1 km
lilongwe_population_5k <- aggregate(lilongwe_population,
fact=50,fun=sum,na.rm=TRUE) # 5 km
lusaka_population_1k <- aggregate(lusaka_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
lusaka_population_5k <- aggregate(lusaka_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
nairobi_population_1k <- aggregate(nairobi_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
nairobi_population_5k <- aggregate(nairobi_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
# kenya_population_1k <- aggregate(kenya_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
# kenya_population_5k <- aggregate(kenya_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
#
# northern_tanzania_population_1k <-
# aggregate(northern_tanzania_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
# northern_tanzania_population_5k <-
# aggregate(northern_tanzania_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
#
# southern_tanzania_population_1k <-
# aggregate(southern_tanzania_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
# southern_tanzania_population_5k <-
# aggregate(southern_tanzania_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
malawi_population_1k <- aggregate(malawi_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
malawi_population_5k <- aggregate(malawi_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
zambia_population_1k <- aggregate(zambia_population,fact=10,fun=sum,na.rm=TRUE) # 1 km
zambia_population_5k <- aggregate(zambia_population,fact=50,fun=sum,na.rm=TRUE) # 5 km
lilongwe_bins <- add_population(lilongwe_bins,lilongwe_population)
lusaka_bins <- add_population(lusaka_bins,lusaka_population)
nairobi_bins <- add_population(nairobi_bins,nairobi_population)
# kenya_bins <- add_population(kenya_sampling_bins,kenya_population)
# northern_tanzania_sampling_bins <-
# add_population(northern_tanzania_sampling_bins,northern_tanzania_population)
# southern_tanzania_sampling_bins <-
# add_population(southern_tanzania_sampling_bins,southern_tanzania_population)
maw_sampling_bin <- add_population(maw_sampling_bin,malawi_population)
zambia_sampling_bin <- add_population(zambia_sampling_bin,zambia_population)